
 

 

 

  

HSR Hochschule für Technik Rapperswil 

Homomorphic 
Tallying with Paillier 
Cryptosystem 
E-Voting seminar 

Sansar Choinyambuu - MSE student                
12/6/2009 
 



- 2 - 
 

An Introduction 
 

This paper introduces a Paillier’s cryptosystem in general, and explains how it can be used in 
Cryptographic voting system given its Homomorphic property. The paper mainly focuses on 
the tallying part of the election process, using Paillier Cryptosystem, which gives us the 
ability to sum up votes even though they have been encrypted. 
 

 

 Outline 
 

• Homomorphic encryption 
• Mathematical functions and notations 
• Paillier’s Cryptosystem 
• Using Paillier encryption’s additively homomorphic  property for vote tallying 
• Example 
• Literature 

 

Homomorphic Encryption  
 

Definition: The encryption algorithm E() is homomorphic if given E(x) and E(y), one can 
obtain  E(x ¬ y) without decrypting x; y for some operation ¬. 
 
Examples 

 RSA is a multiplicative homomorphic algorithm 
 
ci = E(mi) = mi

e mod N      public key is modulus N and exponent e 
c1 · c2 = m1

e · m2
e mod N = (m1 · m2)e mod N     →   E(m1) · E(m2) = E(m1 · m2) 

 
 ElGamal is multiplicative homomorphic algorithm as well 

 
In a group G, if the public key is (G,q,g,h), where h = gx , and x is the secret key 
 
ci = E(mi) = (gr , mi · hr)  for some r ∈ {0, ... , q - 1} 
c1·c2 = E(m1) · E(m2) = (gr1 , m1 · hr1) (gr2 , m2 · hr2) = (gr1 + r2,(m1 · m2) h r1 + r2) = E (m1·m2)  



- 3 - 
 

Mathematical functions and notations 

To be able to understand how Paillier Cryptosystem works, one should have knowledge on 
the following basic mathematical concepts. 

General common divisor (gcd) of two or more non zero integers is the largest positive integer 
that divides the numbers without a remainder. The greatest common divisor of a and b is 
written as gcd(a, b), or sometimes simply as (a, b). For example 𝑔𝑔𝑔𝑔𝑔𝑔(4,  6) =  2,𝑔𝑔𝑔𝑔𝑔𝑔(4,  14) =  2. 
Two numbers are called coprime or relatively prime if their greatest common divisor equals 
to 1. For example, 9 and 28 are relatively prime. 

Least common multiple (lcm) of two or more non zero integers is the smallest integer that is 
divisible by every member of a set of numbers without a remainder. For example, 
 𝑙𝑙𝑔𝑔𝑙𝑙(4,  6) =  12, 𝑙𝑙𝑔𝑔𝑙𝑙(4,  14) =  28. 

It’s a remarkable fact that 𝑎𝑎𝑎𝑎 =  𝑙𝑙𝑔𝑔𝑙𝑙(𝑎𝑎, 𝑎𝑎)  ∗  𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑎𝑎) , thus 𝑙𝑙𝑔𝑔𝑙𝑙(𝑎𝑎, 𝑎𝑎)  =  𝑎𝑎𝑎𝑎
𝑔𝑔𝑔𝑔𝑔𝑔 (𝑎𝑎 ,𝑎𝑎)

   

This fact can be easily seen that 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑎𝑎) is the product of the common prime factors of 𝑎𝑎𝑎𝑎, 
and the remaining factors would result 𝑙𝑙𝑔𝑔𝑙𝑙(𝑎𝑎, 𝑎𝑎). 

Euler’s totient function (phi function) The totient of a positive integer n is defined to be the 
number of positive integers less than or equal to n that are coprime to n. For example      
 φ (9) = 6 since the six numbers 1, 2, 4, 5, 7 and 8 are coprime to 9. If n can be 
factorized to distinct prime numbers p and q, then 𝜑𝜑(𝑛𝑛)  =  (𝑝𝑝 − 1)(𝑞𝑞 − 1).  For example                                    
 ɸ(15)  =  ɸ(3 ∗ 5)  =  (3 − 1)(5 − 1)  =  8 

Carmichael’s function (λ function) is given by the least common multiple (lcm) of all the 
factors of the totient function ɸ(n). If n can be factorized to prime number p and q 
 𝜆𝜆(𝑛𝑛)  =  𝑙𝑙𝑔𝑔𝑙𝑙 (𝑝𝑝 − 1, 𝑞𝑞 − 1)  

Modular multiplicative inverse of an integer a modulo m is an integer x such that 
 𝑎𝑎−1  ≡ 𝑥𝑥 𝑙𝑙𝑚𝑚𝑔𝑔 𝑙𝑙            This is equivalent to      𝑎𝑎𝑥𝑥 ≡ 1 𝑙𝑙𝑚𝑚𝑔𝑔 𝑙𝑙 

The multiplicative inverse of a modulo m exists if and only if  a and m are coprime (i.e., if 

𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎,  𝑙𝑙)  =  1). 

Converting a decimal Number to any base number  The remainders that we get when we 
sequentially divide the decimal number by the base end up being the digits of the result, 
which are read from bottom to top. Example: convert 19010 to base 3. 

190 = 2*34 + 1*33 + 0*32 + 0*31 + 1*30 

The following notations are used frequently in Paillier Cryptosystem explanation: 
 
 ℤ𝑛𝑛  - set of integers n 

 ℤ𝑛𝑛∗ - set of integers coprime to n - this set consists of ɸ(𝑛𝑛) number of integers 

 ℤ𝑛𝑛2
∗ - set of integers coprime to 𝑛𝑛2 -  this set consists of  𝑛𝑛ɸ(𝑛𝑛) number of integers 



- 4 - 
 

Paillier cryptosystem  

The Paillier Cryptosystem named after and invented by French researcher Pascal Paillier in 
1999 is an algorithm for public key cryptography.  

The distinguishing technique used in public key cryptography is the use of asymmetric key 
algorithms, where the key used to encrypt a message is not the same as the key used 
to decrypt it. Each user has a pair of cryptographic keys — a public key and a private key. The 
private key is kept secret, whilst the public key may be widely distributed. Messages 
are encrypted with the recipient's public key and can only be decrypted with the 
corresponding private key. The keys are related mathematically, but the private key cannot 
be feasibly (ie, in actual or projected practice) derived from the public key. 

The Paillier Cryptosystem’s scheme works as follows: 

Key generation 

1. Choose two large prime numbers p and q randomly and independently of each other 
such that gcd�𝑝𝑝𝑞𝑞, (𝑝𝑝 − 1)(𝑞𝑞 − 1)� = 1  

This property is assured if both primes are of equivalent length, i.e.,        
𝑝𝑝, 𝑞𝑞 ∈ 1 ∥ {0,1}𝑠𝑠−1       for security parameter s. 

2. Compute RSA modulus n = pq  and  

Carmichael’s function 𝜆𝜆 = 𝑙𝑙𝑔𝑔𝑙𝑙(𝑝𝑝 − 1, 𝑞𝑞 − 1)  it can be computed using 𝜆𝜆 = (𝑝𝑝−1)(𝑞𝑞−1)
gcd(𝑝𝑝−1,𝑞𝑞−1)

 

3. Select generator g where 𝑔𝑔 ∈ ℤ∗𝑛𝑛2  There are two ways of selecting the g. 
a. Randomly select g from a set ℤ∗𝑛𝑛2   where    

 gcd �𝑔𝑔
𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔  𝑛𝑛2−1 

𝑛𝑛
,𝑛𝑛� = 1  

 
There are ɸ(𝑛𝑛) ∗ ɸ(𝑛𝑛) number of valid generators, therefore the 
probability of choosing them out of 𝑛𝑛ɸ(𝑛𝑛) elements of ℤ∗𝑛𝑛2  set is 
relatively high for big n. 
 

b. Select α and 𝛽𝛽 randomly from a set ℤ𝑛𝑛∗ then calculate                   
𝑔𝑔 = (𝛼𝛼𝑛𝑛 +  1)𝛽𝛽𝑛𝑛  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2 
In this case the selected generator always meets the condition 
above. 

4. Calculate the following modular multiplicative inverse 

𝜇𝜇 = �𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2��
−1
𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛  

Where the function L is defined as 𝐿𝐿(𝑢𝑢) = 𝑢𝑢−1
𝑛𝑛

 

This multiplicative inverse exists if and only if valid generator was selected in 
previous step. 

• The public (encryption) key is (n,g). 
• The private (decryption) key is (λ,μ). 



- 5 - 
 

A a simpler variant of the above key generation steps would be to set 𝑔𝑔 = 𝑛𝑛 + 1, 𝜆𝜆 = 𝜑𝜑(𝑛𝑛) 
and 𝜇𝜇 = 𝜑𝜑(𝑛𝑛)−1 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 , where 𝜑𝜑(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1). 

Encryption 

1. Let m be a message to be encrypted where 𝑙𝑙 ∈ ℤ𝑛𝑛   
2. Select random r where 𝑟𝑟 ∈ ℤ∗𝑛𝑛  
3. Compute ciphertext as: 𝑔𝑔 = 𝑔𝑔𝑙𝑙 ∙ 𝑟𝑟𝑛𝑛  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2  

Decryption 

1. Ciphertext 𝑔𝑔 ∈ ℤ∗𝑛𝑛2    
2. Compute message: 𝑙𝑙 = 𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2� ∙ 𝜇𝜇 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛  

 Homomorphic properties 

A notable feature of the Paillier cryptosystem is its homomorphic properties. As the 
encryption function is additively homomorphic, the following identities can be described: 

• Homomorphic addition of plaintexts 

The product of two ciphertexts will decrypt to the sum of their corresponding 
plaintexts, 

𝐷𝐷(𝐸𝐸(𝑙𝑙1, 𝑟𝑟1) ∗ 𝐸𝐸(𝑙𝑙2, 𝑟𝑟2) 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2) = 𝑙𝑙1 + 𝑙𝑙2 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

The product of a ciphertext with a plaintext raising g will decrypt to the sum of the 
corresponding plaintexts, 

𝐷𝐷(𝐸𝐸(𝑙𝑙1, 𝑟𝑟1) ∗ 𝑔𝑔𝑙𝑙2  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2) = 𝑙𝑙1 + 𝑙𝑙2 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

Practically, this leads to the following identities:         Where ∀ 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐 ∈  ℤ𝒏𝒏 𝒂𝒂𝒏𝒏𝒂𝒂 𝒌𝒌 ∈ ℕ 
𝐷𝐷(𝐸𝐸(𝑙𝑙1)𝐸𝐸(𝑙𝑙2) 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2) =  𝑙𝑙1 +  𝑙𝑙2 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

𝐷𝐷�𝐸𝐸(𝑙𝑙)𝑘𝑘  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2� =  𝑘𝑘𝑙𝑙 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

𝐷𝐷(𝐸𝐸(𝑙𝑙1)𝑔𝑔𝑙𝑙2  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2) =  𝑙𝑙1 + 𝑙𝑙2 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

 
𝐷𝐷(𝐸𝐸(𝑙𝑙1)𝑙𝑙2  𝑙𝑙𝑚𝑚𝑔𝑔  𝑛𝑛2)  

𝐷𝐷(𝐸𝐸(𝑙𝑙2)𝑙𝑙1  𝑙𝑙𝑚𝑚𝑔𝑔  𝑛𝑛2) 

Applications 

• Electronic Voting 

The above homomorphic properties can be utilized by secure electronic voting systems. 
Consider a simple binary ("for" or "against") vote. Let m voters cast a vote of either 1 (for) or 
0 (against). Each voter encrypts their choice before casting their vote. The election official 
takes the product of the m encrypted votes and then decrypts the result and obtains the 



- 6 - 
 

value n, which is the sum of all the votes. The election official then knows that n people 
voted for and m-n people voted against. The role of the random r ensures that two 
equivalent votes will encrypt to the same value only with negligible likelihood, hence 
ensuring voter privacy.  

Using Paillier encryption’s additively homomorphic  property for vote 
tallying  
 

For the voting application one of the two possible additive homomorphic encryption 
algorithms are usually employed: Paillier encryption or modified ElGamal encryption.  Paillier 
encryption is inherently additive homomorphic and more frequently applied. The original 
ElGamal encryption scheme can be simply modified to be additive homomorphic: a message 
is used as an exponent in an exponentiation computation, and then the exponentiation is 
encrypted using the original ElGamal encryption. A passive result of this modification is that 
search for a logarithm must be performed in the decryption function, which becomes 
inefficient when the searching space is big. As the number of the voters is often large in 
voting applications, Paillier cryptosystem is usually preferred. 

Let’s assume the election will take place with: 

𝑁𝑁𝑣𝑣– Number of voters 

𝑁𝑁𝑔𝑔  – Number of candidates 

We have to present each vote in numeric form and encrypt them with Paillier’s encryption.   
Each Paillier encryption requires a random number, so that the same votes will be encrypted 
to different ciphers.  

If we denote the base, which we use to encrypt the messages, as 𝑎𝑎 then the following 
condition must be held. Namely, the base must be greater than the number of voters. 

𝑎𝑎 > 𝑁𝑁𝑣𝑣  

Base serves in the same way as 2 for binary system, and 10 for decimal system. 

Vote messages for candidates will be seen as: 

 1st candidate: 𝑎𝑎0 

 2nd candidate: 𝑎𝑎1   

 …  

 𝑁𝑁𝑔𝑔 -th candidate: 𝑎𝑎𝑁𝑁𝑔𝑔−1 

Then maximum possible number representing single vote  𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥   can exceed to:   

  𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥 =  ∑ 𝑎𝑎𝑖𝑖−1𝑁𝑁𝑔𝑔
𝑖𝑖=1        (A voter has selected all candidates) 



- 7 - 
 

The maximum possible tally of the all votes can exceed to: 

  𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥 =  𝑁𝑁𝑣𝑣 ∗ 𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥     (All voters have selected all candidates) 

Key generation  

Public Key 
To be able to encrypt  𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥   , RSA modulus n must hold the following: 

 𝑛𝑛 ≥ 𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥 + 1     𝑛𝑛 =  𝑝𝑝 𝑞𝑞   

 Where  𝑝𝑝 𝑎𝑎𝑛𝑛𝑔𝑔 𝑞𝑞 are large primes and  gcd�𝑝𝑝𝑞𝑞, (𝑝𝑝 − 1)(𝑞𝑞 − 1)� = 1 

Select random integer g where 𝑔𝑔 ∈ ℤ∗𝑛𝑛2   and  gcd �𝑔𝑔
𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔  𝑛𝑛2−1 

𝑛𝑛
,𝑛𝑛� = 1 

The election authorities should choose the prime numbers p and q considering the number 
of voters and candidates as described above. 

Private Key 
λ = lcm(p − 1,q − 1)     with λ(n) being the Carmichael function 

Modular multiplicative inverse:  𝜇𝜇 = �𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2��
−1
𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

 where function L is defined as 𝐿𝐿(𝑢𝑢) = 𝑢𝑢−1
𝑛𝑛

.  

Encryption 
 𝐸𝐸(𝑙𝑙𝑖𝑖) =  𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑙𝑙𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖𝑛𝑛  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2    Where 𝑟𝑟 ∈ ℤ∗𝑛𝑛  

Tallying 
At the end of the election authorities would have at most 𝑁𝑁𝑣𝑣  of encrypted votes. Then 
authorities can calculate the encrypted tally which is the product of all encrypted votes 
modulo 𝑛𝑛2. 

 𝑇𝑇 =   ∏ 𝑔𝑔𝑖𝑖 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2𝑁𝑁𝑣𝑣
𝑖𝑖=1      𝑇𝑇 – Tally 

Decryption 
As described in homomorphic properties of Paillier encryption: 

 𝑙𝑙 = 𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2� ∙ 𝜇𝜇 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

 𝐷𝐷(𝑇𝑇) =  ∑ 𝑙𝑙𝑖𝑖
𝑁𝑁𝑣𝑣
𝑖𝑖=1  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 

As the result of this decryption function, one gets simple tallying of all votes. To know how 
many votes there were for every candidate we can use “Division remainder” method with 
number of the voters as base. Please refer to the following example for the use of Paillier’s 
cryptosystem in voting. 



- 8 - 
 

Example 
This is the example demonstrating a small election, which uses Paillier Cryptosystem.  

𝑁𝑁𝑣𝑣 = 9 ,𝑁𝑁𝑔𝑔 = 5. Base 𝑎𝑎 is selected as 10. (𝑎𝑎 > 𝑁𝑁𝑣𝑣) 

Say we want to choose 2 new members for the world parliament.  Choosing two candidates 
is preferred. However choosing one candidate or leaving the ballot empty can also be an 
option.  

Voter 
Name 

Donald 
Trump 

100 

Roger 
Federer 

101 

Britney 
Spears 

102 

Dalai 
lama 
103 

Steve 
Jobs 
104 

Vote messages to be encrypted 

Alice       m = 101 = 10 
 Bob        m = 102 + 104 = 10100 
Carol      m = 0 
Dave       m = 103 = 1000 
Eve        m = 100 + 103 = 1001 
Fred        m = 101 + 103 = 1010 
Gil        m = 102 + 103 = 1100 
Helen        m = 101 + 103 = 1010 
Isaac       m = 100 = 1 

Total 2 3 2 5 1 
 

 

As we see from the election rules, the maximum vote message that can ever happen to be 
encrypted is: 𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥 =  104  +  103  =  11000 

And the maximum possible tally can result 𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥 =  𝑁𝑁𝑣𝑣 ∗ 𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥 = 9 ∗ 11000 = 99000 

To be able to encrypt 𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥 , 𝑛𝑛 >  𝑇𝑇𝑙𝑙𝑎𝑎𝑥𝑥    ;   𝑛𝑛 > 99000  

Derived from that  𝑝𝑝 𝑎𝑎𝑛𝑛𝑔𝑔 𝑞𝑞 >  √99000   where p and q are assumed to have same length. 

Key generation 

1. So we choose primes randomly 𝑝𝑝 =  293, 𝑞𝑞 =  433  
    gcd�𝑝𝑝𝑞𝑞, (𝑝𝑝 − 1)(𝑞𝑞 − 1)� = 1 Holds here 
 

2. 𝑛𝑛 =  𝑝𝑝𝑞𝑞 =  126869  𝑛𝑛2 =  16095743161  RSA modulus n 
 

3. 𝜆𝜆 = (𝑝𝑝−1)(𝑞𝑞−1)
gcd(𝑝𝑝−1,𝑞𝑞−1)

=  31536    Carmichael’s function 

 
 

4. We choose Paillier generator g randomly  where 𝑔𝑔 ∈ ℤ∗𝑛𝑛2   and    

 gcd �𝑔𝑔
𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔  𝑛𝑛2−1 

𝑛𝑛
,𝑛𝑛� = 1        𝑔𝑔 =  6497955158 

 



- 9 - 
 

5. 𝜇𝜇 = �𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2��
−1
𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 =

�649795515831536𝑙𝑙𝑚𝑚𝑔𝑔 16095743161 − 1
126869� �

−1
𝑙𝑙𝑚𝑚𝑔𝑔 126869 =  53022 

Encryption of the vote messages 

𝐸𝐸(𝑙𝑙𝑖𝑖) =  𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑙𝑙𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖𝑛𝑛  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2 = 6497955158𝑙𝑙𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖126869 𝑙𝑙𝑚𝑚𝑔𝑔 16095743161         r ∈ ℤ∗𝑛𝑛  

Voter Name Vote messages to be 
encrypted 

Random 
ri 

Encrypted Vote ci 

Alice m = 101 = 10 35145 13039287935 
 Bob m = 102 + 104 = 10100 74384 848742150 
Carol m = 0 96584 7185465039 
Dave m = 103 = 1000 10966 80933260 
Eve m = 100 + 103 = 1001 17953 722036441 
Fred m = 101 + 103 = 1010 7292 * 350667930 * 
Gil m = 102 + 103 = 1100 24819 4980449314 
Helen m = 101 + 103 = 1010 4955 * 7412822644 * 
Isaac m = 100 = 1 118037 3033281324 

Simple tally 23251   

*Note that the same votes from Fred and Helen are encrypted to different ciphers with the 
help of randomization. 

Tallying  

 𝑇𝑇 =   ∏ 𝑔𝑔𝑖𝑖  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2𝑁𝑁𝑣𝑣
𝑖𝑖=1 = (13039287935 ∗  848742150 ∗  7185465039 ∗  80933260 ∗

 722036441 ∗  350667930 ∗  4980449314 ∗  7412822644 ∗
 3033281324)   𝑙𝑙𝑚𝑚𝑔𝑔 16095743161  =  2747997353 

Decryption 

𝑙𝑙 = 𝐿𝐿�𝑔𝑔𝜆𝜆  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛2� ∙ 𝜇𝜇 𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛

=  �
�274799735331536mod 16095743161� − 1

126869
� ∙ 53022 mod 126869

=  15232 

 

So 𝐷𝐷(𝑇𝑇) =  ∑ 𝑙𝑙𝑖𝑖
𝑁𝑁𝑣𝑣
𝑖𝑖=1  𝑙𝑙𝑚𝑚𝑔𝑔 𝑛𝑛 is now proven in the above example. In other words encrypted 

tally of the all votes decrypts to the sum of all plain votes. 

Now the election authority wants to know who have won the election. To know this, we 
convert the decrypted tally, which is in decimal form, to a number with the base chosen at 
the beginning of the election. 

We used the base 10, so actually there is no conversion needed. 

 15232 = 1 ∙ 104 +  5 ∙ 103 +  2 ∙ 102 +  3 ∙ 101 +  2 ∙ 100 



- 10 - 
 

As the result of this election Dalai Lama and Roger Federer would be sitting in world 
parliament. 

Literature 
 

1. E-Voting Simulator based on the Paillier Cryptosystem, Andreas Steffen, HSR 
Hochschule für Technik Rapperswil 

2. Interactive demonstration of Paillier Cryptosystem, Omar Hasan 
3. Code for interactive demonstration of Paillier Cryptosystem, Omar Hasan 
4. E-Voting Simulator Glossary, Andreas Steffen, HSR Hochschule für Technik 

Rapperswil 
5. GoogleTechTalk: Verifying Elections with Cryptography (2007), Ben Adida 
6. Paillier Cryptosystem, Wikipedia 
7. Public-key cryptosystems based on composite degree residuosity classes (1999), 

Pascal Paillier 
8. A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic 

Public-Key System (2001), Ivan Damgard, Mads Jurik 
9. A Generalization of Paillier’s Public-Key System with Applications to Electronic 

Voting (2003), Ivan Damgard, Mads Jurik, Jesper Buus Nielsen 
10. End-to-end auditable voting systems Wikipedia 
11. Paillier’s Cryptosystem Università di Catania 
12. Homomorphic encryption  Wikipedia 
13. Lecture Notes 15 : Voting, Homomorphic Encryption Ron Rivest 
14. Progress in cryptology: INDOCRYPT 2004 : 5th International Conference  Anne 

Canteaut, Kapaleeswaran Viswanathan 

http://security.hsr.ch/msevote/paillier�
http://liris.cnrs.fr/~ohasan/pprs/paillierdemo/index.html�
http://liris.cnrs.fr/~ohasan/pprs/paillierdemo/Paillier.java�
http://security.hsr.ch/msevote/glossary.html�
http://www.youtube.com/watch?v=ZDnShu5V99s�
http://en.wikipedia.org/wiki/Paillier�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.4035�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6239�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6239�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3383�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3383�
http://en.wikipedia.org/wiki/End-to-end_auditable_voting_systems�
http://www.ippari.unict.it/~catalano/Corsi/Tesi-Cap3-Paillier.pdf�
http://en.wikipedia.org/wiki/Homomorphic_encryption�
http://web.mit.edu/6.857/OldStuff/Fall02/handouts/L15-voting.pdf�
http://books.google.ch/books?id=3LhR1LPBq1UC&printsec=frontcover&hl=en&source=gbs_navlinks_s#v=onepage&q=&f=false�

	An Introduction
	Outline
	Homomorphic Encryption
	Mathematical functions and notations
	Paillier cryptosystem
	Key generation
	Encryption
	Decryption
	Homomorphic properties
	Applications

	Using Paillier encryption’s additively homomorphic  property for vote tallying
	Key generation
	Public Key
	Private Key

	Encryption
	Tallying
	Decryption

	Example
	Literature

